Biostatistics I: Hypothesis testing

Continuous data: One-sample tests

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

■ e.andrinopoulou@erasmusmc.nl

y@erandrinopoulou

In this Section

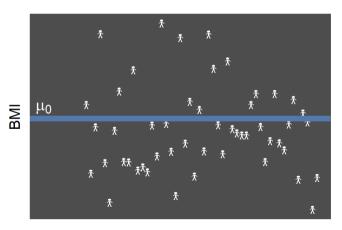
- ► One-sample t-test
- ► One-sample Wilcoxon signed rank test
- Examples

Assumptions

- ▶ The dependent variable must be continuous
- ► The observations are independent
- ► The dependent variable is approximately normally distributed
- ► The dependent variable does not contain any outliers

Scenario

Is the mean BMI of the students in my university different from the mean BMI of all students?



3

Scenario

Is the mean BMI of the students in my university different from the mean BMI of all students?

Connection with linear regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, where $x_i = 0$

$$H_0: \beta_0 = 0$$

$$H_1: \beta_0 \neq 0$$

4

Scenario

Is the mean BMI of the students in my university different from the mean BMI of all students?

Alternatively

 H_{O} : μ = O

 $H_1: \mu \neq 0$

More general

 H_{O} : μ = μ_{O}

 $H_1: \mu \neq \mu_0$

If one-tailed

Is the mean BMI of the students in my university larger than the mean BMI of all students?

 $H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$

or

Is the mean BMI of the students in my university smaller than the mean BMI of all students?

 $H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$

Test statistic

$$t = \frac{\bar{x} - \mu_0}{sd(x)/\sqrt{n}}$$

- ▶ Sample mean: \bar{x} (sample of students in my university)
- ▶ Population mean: μ_0 (all students)
- \triangleright Standard deviation of the sample: sd(x)
- ▶ Number of subjects: *n*

Sampling distribution

- ▶ t-distribution with df = n 1
- ► Critical values and p-value

Type I error

Normally α = 0.05

Draw conclusions

▶ Compare test statistic (*t*) with the critical values_{$\alpha/2$} or the p-value with α

If **one-tailed**: Compare test statistic with the critical value_{α}

Scenario

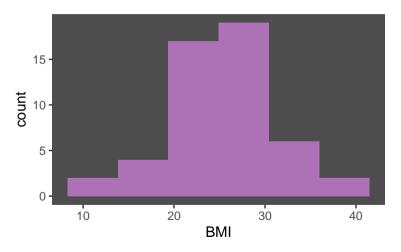
Is the mean BMI of the students in my university different from the mean BMI of all students?

Hypothesis

 H_{O} : μ = μ_{O}

 $H_1: \mu \neq \mu_0$

Collect and visualize data



Hypothesis

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

Test statistic

Let's assume that:

- ► Sample mean \bar{x} = 24
- ▶ Mean of all students μ_0 = 20
- Standard deviation of the sample sd(x) = 6
- ► Number of subjects *n* = 50

$$t = \frac{\bar{x} - \mu_0}{sd(x)/\sqrt{n}} = \frac{24 - 20}{6/\sqrt{50}} = 4.7$$

Degrees of freedom

$$df = 50 - 1 = 49$$

Type I error

$$\alpha$$
 = 0.05

Critical values

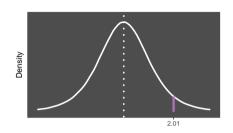
Using R we get the critical values from the t-distribution: critical value_{0.05/2} = critical value_{0.05/2}

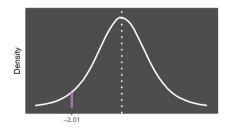
$$qt(p = 0.05/2, 49, lower.tail = FALSE)$$

[1] 2.009575 -critical value_{$\alpha/2$} = -critical value_{0.05/2}

$$qt(p = 0.05/2, 49, lower.tail = TRUE)$$

[1] -2.009575





Critical values

```
If one-tailed
critical value<sub>a</sub>:
qt(p = 0.05, df, lower.tail = FALSE)
or
-critical value<sub>a</sub>:
qt(p = 0.05, df, lower.tail = TRUE)
```

Draw conclusions

We reject the H_0 if:

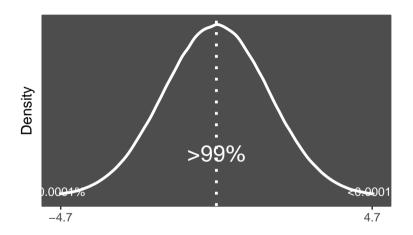
▶ $t > \text{critical value}_{\alpha/2}$ or $t < - \text{critical value}_{\alpha/2}$

We have 4.7 > 2.01 \Rightarrow we reject the H_0

Using \mathbb{R} we obtain the p-value from the t-distribution:

$$2 * pt(q = 4.7, df = 49, lower.tail = FALSE)$$

[1] 2.146314e-05



Draw conclusions

```
If one-tailed
We reject the H_0 if: t > critical value<sub>\alpha</sub>
Using R we obtain the p-value from the t-distribution:
pt(q = t, df, lower.tail = FALSE)
or
We reject the H_0 if: t < -critical value<sub>\alpha</sub>
Using R we obtain the p-value from the t-distribution:
pt(q = t, df, lower.tail = TRUE)
```

Assumptions

- ► Population distribution is symmetric
- ▶ The observations are independent of one another

▶ Scenario

Is the median score value of the students in my university different from the median score value of all students?

► Connection with linear regression

What is signed rank??
Ranks are integers indicating the rank of some values.

[1] 3 1 5 4 2

For signed ranks we obtain the rank according to the absolute value and we add the sign.

$$sign(c(3, -10, 16, 6, 2)) * rank(abs(c(3, -10, 16, 6, 2)))$$

▶ Connection with linear regression

$$signed_rank(y_i) = \beta_0 + \beta_1 x_i + \epsilon_i$$
, where $x_i = 0$

$$H_0: \beta_0 = 0$$

$$H_1: \beta_0 \neq 0$$

► Alternatively

$$H_0: m = 0$$

$$H_1: m \neq 0$$

More general

$$H_0: m = m_0$$

$$H_1: m \neq m_0$$

If one-tailed

Is the median score value of the students in my university larger than the median score value of all students?

 $H_0: m = m_0$ $H_1: m > m_0$

or

Is the median score value of the students in my university smaller than the median score value of all students?

 $H_0 : m = m_0$ $H_1 : m < m_0$

Test statistic

- Calculate the ranks of the absolute difference
 - If ties ⇒ assign the average of the tied ranks
 - ► If a pair of scores are equal ⇒ they are dropped from the analysis and the sample size is reduced
- ▶ Obtain the sum of those ranks where the difference was positive or negative $W_+ = \sum R_d^+$ or $W_- = \sum R_d^-$, where R_d are the ranks of the differences
- ▶ The test statistic (W) is the minimum of W_+ and W_-

If **one-tailed**: use either W_+ or W_- for the test statistic (W) depending on the direction of the alternative hypothesis

Sampling distribution

► For large sample size, we use the normal approximation, that is, W is normally distributed

$$\mu_W = \frac{n(n+1)}{4} \text{ and}$$

$$\sigma_W = \sqrt{\frac{n(n+1)(2n+1)}{24}}$$

$$Z = \frac{|\max(W_+, W_-) - \mu_W| - 1/2}{\sigma_W}$$
When there are ties, the mean stays the same but the variance is reduced by a quantity

► For small sample size, we can use the exact distribution (more details in the application)

Get critical values and p-value

Type I error

Normally α = 0.05

Draw conclusions

ightharpoonup Compare test statistic with the critical values_{$\alpha/2$} or the p-value with α

If **one-tailed**: Compare test statistic with the critical value $_{\alpha}$

Scenario

Is the median score value of the students in my university different from the median score value of all students?

Hypothesis

 $H_0: m = m_0$

 $H_1: m \neq m_0$

Collect and visualize data

X	m_0	Difference	Difference	rank
9.75508	10	-0.244920	0.244920	1
11.10491	10	1.104913	1.104913	3
10.69730	10	0.697299	0.697299	2

Hypothesis

 $H_0: m = m_0$

 $H_1: m \neq m_0$

Test statistic

 $W_{-} = 1$ and $W_{+} = 5$

Type I error

 α = 0.05

Exact distribution

If n=3 with no ties, we have $0,\ldots,6$ possible values for W. Each of the three data points would be assigned a rank of either 1,2, or 3. Depending on whether the data point fell above or below m_0 , each of the three possible ranks 1,2, or 3 would remain either a positive signed rank or become a negative.

			W	Probability
1	2	3	6	0.125
-1	2	3	5	0.125
1	-2	3	4	0.125
1	2	-3	3	0.250
-1	-2	3	3	0.250
-1	2	-3	2	0.125
1	-2	-3	1	0.125
-1	-2	-3	0	0.125

Summarize the probs:					
W	Probability				
0	0.125				
1	0.125				
2	0.125				
3	0.250				
4	0.125				
5	0.125				
6	0.125				

Critical values

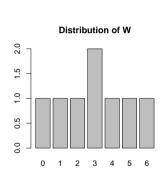
Using ${\tt R}$ we get the critical values from the exact distribution:

low critical value $_{\alpha/2}$ = low critical value $_{0.05/2}$

$$qsignrank(p = 0.05/2, n = 3, lower.tail = TRUE)$$

[1] 0 high critical value $_{\alpha/2}$ = high critical value $_{0.05/2}$

```
qsignrank(p = 0.05/2, n = 3, lower.tail = FALSE)
```

Critical values

```
If one-tailed
low critical value<sub>a</sub>:
qsignrank(p = 0.05, n = n, lower.tail = TRUE)
or
high critical value.:
qsignrank(p = 0.05, n = n, lower.tail = FALSE)
```

Draw conclusions

We reject the H_0 if:

▶ $W > \text{high critical value}_{\alpha/2}$ or $W < \text{low critical value}_{\alpha/2}$

We have 5 < 6 and $1 > 0 \Rightarrow$ we do *not* reject the H_0

Draw conclusions

Using R we obtain the p-value from the exact distribution:

$$p - value = 2 * Pr(W <= 1)$$
:

or

$$p - value = 2 * Pr(W >= 5) = 2 * (1 - Pr(W < 5))$$
:

$$2 * (1 - psignrank(q = 5 - 1, n = 3, lower.tail = TRUE))$$

$$2 * psignrank(q = 5 - 1, n = 3, lower.tail = FALSE)$$

Draw conclusions

```
If one-tailed
Using R we obtain the p-value from the exact distribution:
psignrank(q = W, n = n, lower.tail = TRUE)
or
Using R we obtain the p-value from the exact distribution:
1 - psignrank(q = W - 1, n = n, lower.tail = TRUE)
or
psignrank(q = W - 1, n = n, lower.tail = FALSE)
```